NOAA ERDDAP
Easier access to scientific data
log in | ?    
Brought to you by NOAA NMFS SWFSC ERD    

ERDDAP > info > noaaSanctSound_CI01_02_bocaccio

Grid
DAP
Data
Sub-
set
Table
DAP
Data
Make
A
Graph
W
M
S
Source
Data
Files
Acces-
sible
?
Title Sum-
mary
FGDC,
ISO,
Metadata
Back-
ground
Info
RSS E
mail
Institution Dataset ID
 data       graph     files  public NOAA-Navy Sanctuary Soundscape Monitoring Project, Bocaccio Sound Production, Channel
Islands, SanctSound_CI01_02_bocaccio
   ?        I   M   background (external link) RSS Subscribe NOAA noaaSanctSound_CI01_02_bocaccio

The Dataset's Variables and Attributes

Row Type Variable Name Attribute Name Data Type Value
attribute NC_GLOBAL abstract String This record represents bocaccio calls detection from raw passive acoustic data. Calls were detected automatically using Triton's Fish Detector. Recordings were first decimated to a sample rate of 2 kHz. The fish detector filtered the time series between 100 and 950 Hz, and computed cross-correlation between the envelope of a filtered example call and 75s of the envelope of the filtered time series. To detect signals within varying background noise, we used a floating threshold of the median cross correlation value over the current 75 s of data, with a threshold offset of 2e-9 above the median. Detections were evaluated if they reached above this threshold. Consecutive calls were required to have a minimum time gap of 0.5 s to be detected separately. RMS received level was computed over the potential detection period and a time series of the length of the bocaccio call template before and after the detection. Detections were considered false and discarded if the signal-to-noise ratio between the detection period and the timeseries before and after the detection was less than 0.01. The threshold was evaluated based on the distribution of histograms of manually verified true and false detections. A trained analyst verified the detections as true or false.These data were recorded at SanctSound Site CI01_02 between March 25, 2019 and August 04, 2019.
attribute NC_GLOBAL acknowledgement String This project received funding from the U.S. Navy.
attribute NC_GLOBAL cdm_data_type String TimeSeries
attribute NC_GLOBAL citation String Cite as: NOAA Office of National Marine Sanctuaries and U.S Navy. 2021. Bocaccio Sound Production Recorded at SanctSoundSite CI01_02, SanctSound Data Products. NOAA National Centers for Environmental Information. Accessed [date]. DOI: https://doi.org/http://doi.org/10.25921/dtqr-c663
attribute NC_GLOBAL comment String Data quality: Frequencies above the first octave (Fc = 31.5 Hz) may be affected by unknown noise. There is a 6.1 hrs gap in data before 2019-05-31 02:54:16 UTC due to the recording switching between two cards.
attribute NC_GLOBAL contributor_name String Simone Baumann-Pickering, Scripps Institution of Oceanography; Leila Hatch, NOAA Stellwagen Bank National Marine Sanctuary; John Joseph, U.S. Naval Postgraduate School; Anke Kuegler, Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa; Marc Lammers, NOAA Hawaiian Islands Humpback Whale National Marine Sanctuary; Tetyana Margolina, U.S. Naval Postgraduate School; Karlina Merkens, NOAA Pacific Islands Fisheries Science Center; Lindsey Peavey Reeves, NOAA Channel Islands National Marine Sanctuary; Timothy Rowell, NOAA Northeast Fisheries Science Center; Jenni Stanley, Woods Hole Oceanographic Institution; Alison Stimpert, Moss Landing Marine Laboratories; Sofie Van Parijs, NOAA Northeast Fisheries Science Center; Eden Zang,NOAA Hawaiian Islands Humpback Whale National Marine Sanctuary
attribute NC_GLOBAL contributor_role String Principal Investigator
attribute NC_GLOBAL Conventions String COARDS, CF-1.6, ACDD-1.3
attribute NC_GLOBAL creator_email String ncei.info at noaa.gov
attribute NC_GLOBAL creator_name String NOAA NCEI
attribute NC_GLOBAL creator_url String https://www.ncei.noaa.gov/ (external link)
attribute NC_GLOBAL date_created String 2022-08-22
attribute NC_GLOBAL date_issued String 2022-08-22
attribute NC_GLOBAL featureType String TimeSeries
attribute NC_GLOBAL geospatial_bounds String POINT (34.0438 -120.08105)
attribute NC_GLOBAL history String Bocaccio calls were detected automatically using the Fish Detector in Triton version 1.93 (Scripps Whale Acoustics Lab, San Diego, CA). Recordings were decimated to a sample rate of 2,000 Hz before running through the detector. The fish detector first filtered the time series between 100 and 950 Hz (10th order Butterworth filter). Then, it computed cross-correlation between the envelope of a filtered example call (3 s, Hann windowed) and 75s of the envelope of the filtered time series (i.e., Hilbert transform low pass filter). To enhance peaks in the signal, the cross correlation was squared. To account for detecting signals within background noise, we used a floating threshold of the median cross correlation value over the current 75 s of data, with a threshold offset of 2e-9 above the median. Detections were evaluated if they reached above this threshold. Consecutive calls were required to have a minimum time gap of 0.5 s to be detected separately. RMS received level was computed over the potential detection period and a time series of the length of the bocaccio call template before and after the detection. Detections were considered false and discarded if the signal-to-noise ratio between the detection period and the timeseries before and after the detection was less than 0.01. The threshold was evaluated based on the distribution of histograms of manually verified true and false detections. After running the detector, a trained analyst verified the detections as true or false. Data were processed with Triton - (1.93.20160524/Github version d81e5fa) and Matlab (2016b and newer; statistics toolbox).
attribute NC_GLOBAL id String http://doi.org/10.25921/dtqr-c663 (external link)
attribute NC_GLOBAL infoUrl String https://ncei.noaa.gov (external link)
attribute NC_GLOBAL institution String NOAA
attribute NC_GLOBAL instrument String SoundTrap ST500
attribute NC_GLOBAL keywords String acoustic attenuation/transmission, acoustics, ambient noise, aquatic ecosystems, cetacean, environmental, fish, frequency, intensity, marine environment monitoring, marine habitat, national centers for environmental information, Navy, NOAA, ocean acoustics, oceans, office of national marine sanctuaries, passive acoustic recorder, pressure, sound_intensity_level_in_water, soundscapes
attribute NC_GLOBAL keywords_vocabulary String GCMD Science Keywords
attribute NC_GLOBAL license String The data may be used and redistributed for free but are not intended for legal use, since it may contain inaccuracies. Neither the data creator, NOAA, nor the United States Government, nor any of their employees or contractors, makes any warranty, express or implied, including warranties of merchantability and fitness for a particular purpose, or assumes any legal liability for the accuracy, completeness, or usefulness, of this information.
attribute NC_GLOBAL naming_authority String NOAA-Navy
attribute NC_GLOBAL project String NOAA-Navy Sanctuary Soundscape Monitoring Project
attribute NC_GLOBAL publisher_email String erd.data at noaa.gov
attribute NC_GLOBAL publisher_name String NOAA NMFS SWFSC ERD
attribute NC_GLOBAL publisher_type String institution
attribute NC_GLOBAL publisher_url String https://www.pfeg.noaa.gov (external link)
attribute NC_GLOBAL sourceUrl String (local files)
attribute NC_GLOBAL standard_name_vocabulary String CF Standard Name Table v55
attribute NC_GLOBAL summary String NOAA and the U.S. Navy are working to better understand underwater sound within the U.S. National Marine Sanctuary System. From 2018 to 2021, these agencies will work with numerous scientific partners to study sound within seven national marine sanctuaries and one marine national monument, which includes waters off Hawai'i and the east and west coasts. Standardized measurements will assess sounds produced by marine animals, physical processes (e.g., wind and waves), and human activities. Collectively, this information will help NOAA and the Navy measure sound levels and baseline acoustic conditions in sanctuaries. This work is a continuation of ongoing Navy and NOAA research, including efforts by NOAA's Office of National Marine Sanctuaries This dataset represents the derived products from the raw acoustic data that are archived at NOAA National Centers for Environmental Information.
attribute NC_GLOBAL title String NOAA-Navy Sanctuary Soundscape Monitoring Project, Bocaccio Sound Production, Channel Islands, SanctSound_CI01_02_bocaccio
dimension start_time   double nValues=1167, evenlySpaced=false, averageSpacing=9721.480800171455
attribute start_time actual_range double 1.5535456536690001E9, 1.564880900282E9
attribute start_time axis String T
attribute start_time comment String Start time of detections. Corresponding end time for detection in end_time_var at same index value as start_time_var.
attribute start_time ioos_category String Time
attribute start_time long_name String Start Time
attribute start_time standard_name String time
attribute start_time time_origin String 01-JAN-1970 00:00:00
attribute start_time time_precision String 1970-01-01T00:00:00.000Z
attribute start_time units String seconds since 1970-01-01T00:00:00Z
variable bocaccio_presence   double start_time
attribute bocaccio_presence cell_methods String time: sum (comment: presence (1) or absence (0) over time interval)
attribute bocaccio_presence comment String Presence of bocaccio calls (0 = not present; 1 = present)
attribute bocaccio_presence ioos_category String Statistics
attribute bocaccio_presence long_name String bocaccio presence
attribute bocaccio_presence standard_name String bocaccio_presence
attribute bocaccio_presence units String boolean
variable end_time   double start_time
attribute end_time actual_range double 1.553545654129E12, 1.564880903348E12
attribute end_time axis String T
attribute end_time comment String End time of detections. Corresponding start time for detection in start_time_var at same index value as end_time_var.
attribute end_time ioos_category String Time
attribute end_time long_name String End Time
attribute end_time standard_name String end_time
attribute end_time time_origin String 01-JAN-1970 00:00:00
attribute end_time units String seconds since 1970-01-01T00:00:00Z

The information in the table above is also available in other file formats (.csv, .htmlTable, .itx, .json, .jsonlCSV1, .jsonlCSV, .jsonlKVP, .mat, .nc, .nccsv, .tsv, .xhtml) via a RESTful web service.


 
ERDDAP, Version 2.25
Disclaimers | Privacy Policy | Contact